VG xata

Best Practices for Creating Ephemeral
Environments with PIll for Postgres

May 2025

Monica Sarbu
Founder & CEO @ Xata.ai

m monicasarbu

32 xqtq Features v Open Source v Pricing

Postgres at scale”

For AWS RDS, Amazon Aurora, GCP CloudSQL,
Azure Database. Or we host it for you.

]
(o .

Improve developer velocity with instant Copy-on-Write branches
(including anonymized data) for any Postgres provider, and deploy
confidently using zero-downtime schema changes.

Learn about staging and dev environments ->

Dev DB branch 8

Staging 8 8
Dev DB branch B

Performance and cost efficiency by maximizing your production
workloads with Postgres running at the speed of local NVMe
storage.

See the benchmark ->

Throughput (TPS) Savings with Xata Price (USD/month)

Xata 3000

Amazon Aurora 2250 Amazon Aurora 2096

performance

——
) 79 Log in v Get access

“Postgres at scale”
for Xata means more
Designed for flexibility by deploying Xata in your own cloud -than jus-t ha dll g
account. You pay your provider directly, and your data stays fully

within your infrastructure for security and compliance. l ge data OI
Explore the Xata platform -> Compute

It’'s about scaling
8 = = team productivity
and operations.

AI-driven optimizations letting the Xata Agent monitor your
database and automatically surface performance improvements.

Meet the Xata Agent >

How can I optimize my PostgreSQL
queries?

6 You can use EXPLAIN ANALYZE to identify
slow queries and add indexes where
necessary.

http://progress_bar_id

M xata

IT WORKED
ON MY
LAPTOP

| Internal
| ServerError

http://progress_bar_id

M xata

From conversations with technical
leaders across the industry

Velocity is the #1 bottleneck
holding engineering teams back.

http://progress_bar_id

M xata

Why?

Shipping is easy. Not breaking things is hard.

http://progress_bar_id

M xata

The hardest part of testing vour PR?
Testing against your database

Most bugs don’t come from your code.
They come from how your code interacts with your database.

http://progress_bar_id

M xata

Common practices

How are teams testing their pull requests
against the database?

http://progress_bar_id

Common Practice: Local Postgres

Developers run PostgreSQL locally

Pros:
e Fully isolated
e Fast feedback loop

Cons:
e Seeded with fake or minimal test data
e Local config might differ from staging or
production.
e No collaboration

POSTGRES

http://progress_bar_id

Common Practice: Test against production

Especially common in early-stage startups

Pros:
e Real data & real configuration
e No need for mock/staging setup
e Fast feedback loop

Cons:

e High risk of data corruption
May trigger real emails/notifications
Migrations or load tests can cause outages
Harder to isolate/test edge cases safely

Convenient but dangerous

PRODUCTION

http://progress_bar_id

Common Practice: Read replica (RDS/Aurora read replica)

AWS native, automatically synced read-only copy of
production

Pros:
e No schema or data drift
e Great for testing read performance, benchmarking

queries
Cons:
e Read-only, cannot test writes or schema changes Ft[)f; .
e Not useful for full end-to-end testing or Read Repllca
integration testing

10

http://progress_bar_id

Common Practice: Production clone

A full copy of the production database
Includes schema, indexes, and all the data

Pros:
e Mirrors production exactly
e Useful for performance testing, regression
tests, and debugging
e No need to mock or synthesize test data
Cons:
e PII exposure risk: may contain sensitive
user data
e High storage costs: large datasets increase
cloud or infra bills
e Slow cloning/syncing: operational overhead
and delays

CLONE

PRODUCTION

1

http://progress_bar_id

Common Practice: Shared staging environments

One or two shared Postgres instances are used by

e Safe, isolated environment for testing
e Great for end-to-end testing and QA

validation i(

Cons:

e Shared Postgres instances lead to test data
gets overwritten, state becomes
unpredictable, and debugging gets harder.

e Staging tends to drift from production over
time

e High setup and maintenance overhead

all developers and QA
Pros:
e Mirrors production infrastructure and —
configuration
]
]
]

4
4
- -
N

\

-
I

12

http://progress_bar_id

Guess I'll test
my code...
tomorrow.

Waiting for

environment
to be free...

M xata

13

http://progress_bar_id

M xata

Rethinking database testing

Test your database like you test your code.

Use branches, run tests, merge with confidence — all in a Git-like workflow.

14

http://progress_bar_id

M xata

Goal

Move fast without breaking prod

15

http://progress_bar_id

Creating staging environment with one click

) Connect to your production /] Create staging replica with
database wherever it is production like data

Projects > Branches

Branches

Each branch contains a database schema that can be edited.

@® Create Branch

Created At v

22h ago

staging 22h ago

16

http://progress_bar_id

Keeps Private Data Safe

Avoids using raw production data in test
environments

Mask sensitive fields (e.g., names,
emails, addresses)

Keep structure & statistical relevance
without exposing real data

Reduces risk of data leaks and ensures
regulatory compliance (GDPR, HIPAA)

main
us-east-1

staging
us-east-1

17

http://progress_bar_id

Introducing pgstream

Open-source tool for capturing data and schema
changes from Postgres.

Supports replication to Postgres,
Elasticsearch, Kafka, webhooks.

Key Features:

DDL change detection (CREATE, ALTER, DROP)
Snapshot + real-time streaming

e Data transformation and masking during
sync

() https://github.com/xataio/pgstream

00 README &5 Apache-2.0license 415 License

pgstream - Postgres replication with DDL changes

pgstrean is an open source CDC command-line tool and library that offers Postgres replication support with DDL

18

http://progress_bar_id
https://github.com/xataio/pgstream

Using pgstream for data masking

Supports parallel snapshotting for
fast data copying

Automated masking built into the
snapshot process

Writes anonymized snapshots to
staging

Runs on a schedule or in CI/CD
pipelines (ex. Run nightly)

Can operate from a read replica to
protect production

Production PostgreSQL

pgstream

Snapshot listener

Transformers

PostgreSQL processor

Staging database with anonymized data

19

http://progress_bar_id

Deterministic & Realistic Transformers

Column-level anonymisation Deterministic to always Realistic allows you to
for fine-grained control produce the same output generate output that looks
for the same input and behaves like real data
Transformers

johndoe@gmail.com - — — — — — — > email @@ (- - = === = > johndoe.work@gmail.com

HIN(EE6IN 12346670 - - — — — — T > BLONE N - + — —— —ir > +1 (555) 987-6543

johndoe92 = - - - — — — — > username @ - — — — — — — > john.doe92

S - =i —e > SOCHE - — — — — i~ > 31

20

http://progress_bar_id

Built-in & custom transformers

pgstream integrates with:

e Greenmask
e NeoSync
e go-masker

Supports custom transformers
in Golang for advanced
masking needs

@ Copy

© Edit

21

http://progress_bar_id

Smart Sampling

If production data is in terabytes,
use a smaller, representative subset
to test performance

Subsetting is complex because you
need to preserve relationships across
tables to keep the data consistent.

The 'orders' table is subsetted to 5%
of the total size.

Production DB
users orders products
(1om) (100Mm) (1im)
pgstream g
Subsetting logic
Staging DB (Subset)
users orders products
(~500k) (~5M) (~50k)

22

http://progress_bar_id

From Staging to Branching

Creating copy-on-write branch for each pull
request

Data is not physically copied at the time of
branch creation.

Instant branches with schema and data

Branches let devs test schema changes,
migrations, and queries in isolation.

Accelerate development, testing, and
collaboration.

This makes branching fast and
storage-efficient.

http://progress_bar_id

Copy-on-write Branching

Built on a multi-tenant block storage
system that separates storage from
compute.

Projects > Branches

Branches

Uses standard PostgreSQL — no forks or
custom storage extensions

Enables precise mirroring of production
environments

Each branch contains a dat

tal

base scl

hema th

@ Create Branch

24

http://progress_bar_id

Copy-on-write branching explained

Step1: Initial state Step2: Create a new branch
Index +-------+ main branch £ B i B B Index - « main branch 8
=%+ Index +------- new branch 8

No full copy — new branches share existing

. data blocks
: s |- (S §§ Instant creation — only metadata (index)
- e e 6 £ is copied
S e e (omn®) B Write isolation — modified blocks are
° ;f copied only when changed
e I e e I LS s

http://progress_bar_id

A Git-like
workflow for
vour database

AWS / GCP / Azure

R R -~ -+ Production PostgreSQL B

Xata

?~o Staging PostgreSQL replica @

. .

Dev DB branch 8§ Dev DB branch 8

Dev DB branch 8§

Dev DB branch 8§ Dev DB branch B8

A

/

OO0 0000000000000000000000000O0O0O00OD00oD0OoDOODDOOD0O0N
OO OO
R e R R AR R

http://progress_bar_id

-

What about applying
database changes
back to production?

~N

)

http://progress_bar_id

M xata

Schema changes is one of people’s least
favorite parts of working with databases

28

http://progress_bar_id

Playbooks for schema changes without downtime

GitLab PayPal

Migration Style Guide e

PostgreSQL at Scale: Database
Schema Changes Without
Downtime

Choose an appropriate migration type

https://medium.com/paypal-tech/postaresql-at-scale-database-sch

https://d .gitlab. /ee/d lop t/migrati tyle_quide.html - -
=:/cocs.gilab.colyee/qevelopmentimiqration _sty'e duice.nim ema-changes-without-downtime-20d3749ed680

29

http://progress_bar_id
https://docs.gitlab.com/ee/development/migration_style_guide.html
https://medium.com/paypal-tech/postgresql-at-scale-database-schema-changes-without-downtime-20d3749ed680
https://medium.com/paypal-tech/postgresql-at-scale-database-schema-changes-without-downtime-20d3749ed680

Custom tools for schema changes

N\

Online Schema Change
by Meta

https://github.com/faceb
ookincubator/OnlineSchem

aChange

Shift
by Square

https://github.com/squazre
/[shift

30

http://progress_bar_id
https://github.com/facebookincubator/OnlineSchemaChange
https://github.com/facebookincubator/OnlineSchemaChange
https://github.com/facebookincubator/OnlineSchemaChange
https://github.com/square/shift
https://github.com/square/shift

Doctolib : GoCarless
Occurs semaphore i Attempting to add NOT fé Foreign key caused
deadlock during schema " NULL constraint " exclusive lock

changes of MySQL

" " "

...

http://progress_bar_id

Why schema changes are hard

fﬁ Locking tables during migrations. Large tables can be locked for
long periods of time, causing downtime.

Limited deployment windows. Changes often need to wait for
AN off-peak hours, slowing down iteration.

Rollback risk. Rolling back migrations is often left untested,
¢\ and 1s error-prone.

P Complex development workflows. Performing schema changes safely
— requires multiple manual steps and multiple pull requests.

32

http://progress_bar_id

Introducing pgroll

() https://github.com/xataio/pgroll

[0 README 5[Apache-2.0 license

follow @xata [

pgroll - Zero-downtime, reversible, schema migrations for
Postgres

pgroll is an open source command-line tool that offers safe and reversible schema migrations for PostgreSQL
by serving multiple schema versions simultaneously. It takes care of the complex migration operations to ensure
that client applications continue working while the database schema is being updated. This includes ensuring
changes are applied without locking the database, and that both old and new schema versions work
simultaneously (even when breaking changes are being made!). This removes risks related to schema migrations,
and greatly simplifies client application rollout, also allowing for instant rollbacks.

See the introductory blog post for more about the problems solved by pgroll .

M xata

https://pgroll.com

groll Documentation Blog

MA MIGRATIONS MADE S

Take the fear out of
schema changes

Update your PostgreSQL schema without downtime or complex '
rollbacks. pgroll automates data backfills and simultaneously @
supports old and new schemas as you roll out your application. [P9 roll

Schedule a demo. © Github

http://progress_bar_id
https://github.com/xataio/pgroll
https://pgroll.com

pgroll - unique approach

No Downtime - safe for prod

Multi-Version Schema — dual views for
smooth rollout

Expand/Contract Workflow — add first,
remove later

Auto Backfills — no manual scripts

Hidden Columns — seamless background
changes

Schema changes flow

Schema change starts New schema ready Schema change completed
& Database

old version available E B

active mlgmitm Psrlodi‘i‘
1 i

8% App/Clients

34

http://progress_bar_id

After using pgroll

fﬁ Safe by default All schema changes are safe and guaranteed to
not lock tables for a long time.

Online schema migrations. High level schema changes operations
AN are performed online, without downtime.

Instant and safe rollback. Rolling back migrations means simply
¢\ dropping the views and temporary objects.

o Simple workflow via multi-version views. The old and the new
- schema are available at the same time, which greatly simplifies
the schema change workflow.

35

http://progress_bar_id

GitHub actions integration makes it powerful

Bl

N

Trigger on PR (excluding main)

Install and auth Xata CLI

Create a dev branch based on the PR

Checkout and apply pgroll migrations

github-actions (bot) commented on Mar 26 - edited ~

Xata Dev Branch

Creating Xata Dev Branch for commit: 4b29e4b /[fix_add_assignee_check_2

Please wait for the comment to be updated with branch details.

(©)

36

http://progress_bar_id

Key CLI commands

$ xata branch create --name "${{ github.head_ref }}"
Name: feat_task_assignee

$ xata branch checkout "${{ github.head_ref }}"
Switched to branch feat_task_assignee

connect to the branch
$ psql "xata branch url’

$ xata roll migrate

http://progress_bar_id

M xata

Recommended talk:

Anatomy of Table-Level Locks in
PostgreSQL

Date: 2025-05-09

Time: 12:40-13:25

Room: Berlin 2+3

Level: Intermediat

Speaker: GuUl¢in Yildirim Jelinek /

38

http://progress_bar_id

M xata

Recommended talk:

The AI DBA agent: Would you trust
it to tune your PostgreSQL?

Date: 2025-05-09

Time: 11:10-11:55

Room: Madzrid

Level: Intermediate
Speaker: Tudor Golubenco

39

http://progress_bar_id

¥ xata

Postgres at scale

Thank you!

@ xata.io/discord X @xata
D github.com/xataio m xataio

40

http://progress_bar_id

