
Monica Sarbu
Founder & CEO @ Xata.ai

1

Best Practices for Creating Ephemeral 
Environments with PII for Postgres

May 2025

monicasarbu



2

“Postgres at scale” 
for Xata means more 
than just handling 

large data or 
compute. 

It’s about scaling 
team productivity 
and operations.

http://progress_bar_id


3

http://progress_bar_id


Velocity is the #1 bottleneck 
holding engineering teams back.

4

From conversations with technical 
leaders across the industry

http://progress_bar_id


Shipping is easy. Not breaking things is hard.

5

Why? 

http://progress_bar_id


6

Most bugs don’t come from your code. 
They come from how your code interacts with your database.

The hardest part of testing your PR?
Testing against your database

http://progress_bar_id


7

How are teams testing their pull requests 
against the database?

Common practices

http://progress_bar_id


8

Common Practice: Local Postgres

Developers run PostgreSQL locally 

Pros: 
● Fully isolated
● Fast feedback loop 

Cons: 
● Seeded with fake or minimal test data
● Local config might differ from staging or 

production.
● No collaboration

http://progress_bar_id


9

Common Practice: Test against production

Especially common in early-stage startups

Pros:
● Real data & real configuration
● No need for mock/staging setup
● Fast feedback loop

Cons:
● High risk of data corruption
● May trigger real emails/notifications
● Migrations or load tests can cause outages
● Harder to isolate/test edge cases safely

Convenient but dangerous

http://progress_bar_id


10

Common Practice: Read replica (RDS/Aurora read replica) 

AWS native, automatically synced read-only copy of 
production

Pros: 
● No schema or data drift
● Great for testing read performance, benchmarking 

queries 

Cons: 
● Read-only, cannot test writes or schema changes
● Not useful for full end-to-end testing or 

integration testing

http://progress_bar_id


11

Common Practice: Production clone

A full copy of the production database
Includes schema, indexes, and all the data

Pros:
● Mirrors production exactly
● Useful for performance testing, regression 

tests, and debugging
● No need to mock or synthesize test data

Cons: 
● PII exposure risk: may contain sensitive 

user data
● High storage costs: large datasets increase 

cloud or infra bills
● Slow cloning/syncing: operational overhead 

and delays

http://progress_bar_id


12

Common Practice: Shared staging environments

One or two shared Postgres instances are used by 
all developers and QA
Pros:

● Mirrors production infrastructure and 
configuration

● Safe, isolated environment for testing
● Great for end-to-end testing and QA 

validation
Cons:

● Shared Postgres instances lead to test data 
gets overwritten, state becomes 
unpredictable, and debugging gets harder.

● Staging tends to drift from production over 
time

● High setup and maintenance overhead 

http://progress_bar_id


13

http://progress_bar_id


14

Test your database like you test your code.

Rethinking database testing

Use branches, run tests, merge with confidence — all in a Git-like workflow.

http://progress_bar_id


15

Move fast without breaking prod

Goal

http://progress_bar_id


16

Creating staging environment with one click

Connect to your production 
database wherever it is 

Create staging replica with 
production like data

http://progress_bar_id


17

Keeps Private Data Safe  

Avoids using raw production data in test 
environments

Mask sensitive fields (e.g., names, 
emails, addresses)

Keep structure & statistical relevance 
without exposing real data

Reduces risk of data leaks and ensures 
regulatory compliance (GDPR, HIPAA)

http://progress_bar_id


18

Introducing pgstream 

Open-source tool for capturing data and schema 
changes from Postgres.

Supports replication to Postgres, 
Elasticsearch, Kafka, webhooks.

Key Features:

● DDL change detection (CREATE, ALTER, DROP)
● Snapshot + real-time streaming
● Data transformation and masking during 

sync

 https://github.com/xataio/pgstream 

http://progress_bar_id
https://github.com/xataio/pgstream


19

Using pgstream for data masking    

Supports parallel snapshotting for 
fast data copying

Automated masking built into the 
snapshot process

Writes anonymized snapshots to 
staging

Runs on a schedule or in CI/CD 
pipelines (ex. Run nightly)

Can operate from a read replica to 
protect production

http://progress_bar_id


20

Deterministic & Realistic Transformers

Column-level anonymisation 
for fine-grained control

Deterministic to always 
produce the same output 
for the same input

Realistic allows you to 
generate output that looks 
and behaves like real data

http://progress_bar_id


21

Built-in & custom transformers

pgstream integrates with:

● Greenmask
● NeoSync
● go-masker

Supports custom transformers 
in Golang for advanced 
masking needs

http://progress_bar_id


22

Smart Sampling  

If production data is in terabytes, 
use a smaller, representative subset 
to test performance

Subsetting is complex because you 
need to preserve relationships across 
tables to keep the data consistent.

The 'orders' table is subsetted to 5% 
of the total size.

http://progress_bar_id


23

From Staging to Branching

Creating copy-on-write branch for each pull 
request

Data is not physically copied at the time of 
branch creation.

Instant branches with schema and data 

Branches let devs test schema changes, 
migrations, and queries in isolation.

Accelerate development, testing, and 
collaboration.

This makes branching fast and 
storage-efficient.

http://progress_bar_id


24

Copy-on-write Branching

Built on a multi-tenant block storage 
system that separates storage from 
compute. 

 
Uses standard PostgreSQL — no forks or 
custom storage extensions 
 
Enables precise mirroring of production 
environments

http://progress_bar_id


25

Copy-on-write branching explained

Step1: Initial state

Step3: Copy only modified blocks

Step2: Create a new branch

No full copy — new branches share existing 
data blocks

Instant creation — only metadata (index) 
is copied

Write isolation — modified blocks are 
copied only when changed

http://progress_bar_id


26

A Git-like 
workflow for 

your database

http://progress_bar_id


27

http://progress_bar_id


Schema changes is one of  people’s least 
favorite parts of working with databases

28

http://progress_bar_id


29

https://docs.gitlab.com/ee/development/migration_style_guide.html https://medium.com/paypal-tech/postgresql-at-scale-database-sch
ema-changes-without-downtime-20d3749ed680 

Playbooks for schema changes without downtime

GitLab PayPal

http://progress_bar_id
https://docs.gitlab.com/ee/development/migration_style_guide.html
https://medium.com/paypal-tech/postgresql-at-scale-database-schema-changes-without-downtime-20d3749ed680
https://medium.com/paypal-tech/postgresql-at-scale-database-schema-changes-without-downtime-20d3749ed680


30

Custom tools for schema changes

Online Schema Change
by Meta

https://github.com/faceb
ookincubator/OnlineSchem

aChange 

Shift 
by Square

https://github.com/square
/shift 

http://progress_bar_id
https://github.com/facebookincubator/OnlineSchemaChange
https://github.com/facebookincubator/OnlineSchemaChange
https://github.com/facebookincubator/OnlineSchemaChange
https://github.com/square/shift
https://github.com/square/shift


31

Incidents or near-incidents caused by schema changes

GitHub

Occurs semaphore 
deadlock during schema 

changes of MySQL

Doctolib

Attempting to add NOT 
NULL constraint 

GoCarless

Foreign key caused 
exclusive lock

http://progress_bar_id


32

Why schema changes are hard

Locking tables during migrations. Large tables can be locked for 
long periods of time, causing downtime.

Limited deployment windows. Changes often need to wait for 
off-peak hours, slowing down iteration.

Rollback risk. Rolling back migrations is often left untested, 
and is error-prone.

Complex development workflows. Performing schema changes safely 
requires multiple manual steps and multiple pull requests.

http://progress_bar_id


33

Introducing pgroll 

 https://github.com/xataio/pgroll  https://pgroll.com 

http://progress_bar_id
https://github.com/xataio/pgroll
https://pgroll.com


34

pgroll - unique approach

No Downtime — safe for prod

Multi-Version Schema — dual views for 
smooth rollout

Expand/Contract Workflow — add first, 
remove later

Auto Backfills — no manual scripts

Hidden Columns — seamless background 
changes

http://progress_bar_id


35

After using pgroll

Safe by default All schema changes are safe and guaranteed to 
not lock tables for a long time.

Online schema migrations. High level schema changes operations 
are performed online, without downtime.

Instant and safe rollback. Rolling back migrations means simply 
dropping the views and temporary objects.

Simple workflow via multi-version views. The old and the new 
schema are available at the same time, which greatly simplifies 
the schema change workflow.

http://progress_bar_id


36

GitHub actions integration makes it powerful

Create a dev branch based on the PR 

Checkout and apply pgroll migrations

Install and auth Xata CLI

Trigger on PR (excluding main)

http://progress_bar_id


37

Key CLI commands 

$ xata branch create --name "${{ github.head_ref }}"
Name: feat_task_assignee
Parent Branch Id: **************************%

$ xata branch checkout "${{ github.head_ref }}"
Switched to branch feat_task_assignee

# connect to the branch
$ psql `xata branch url`

$ xata roll migrate

http://progress_bar_id


38

Recommended talk: 

Anatomy of Table-Level Locks in 
PostgreSQL

Date: 2025-05-09
Time: 12:40–13:25
Room: Berlin 2+3
Level: Intermediat
Speaker: Gülçin Yıldırım Jelinek

http://progress_bar_id


39

Recommended talk: 

The AI DBA agent: Would you trust 
it to tune your PostgreSQL?

Date: 2025-05-09
Time: 11:10–11:55
Room: Madrid
Level: Intermediate
Speaker: Tudor Golubenco

http://progress_bar_id


40

@xata

Thank you!

Postgres at scale

xataio

xata.io/discord xata.io

github.com/xataio

http://progress_bar_id

